Methodological note (Flash6): Regression estimation of average annual percentage reduction in deaths from a time series of number of deaths

The average yearly reduction can be calculated from any two years figures if assuming a uniform annual percentage reduction over the period considered as follows:
$P(A)=1-\left(Y_{t 2} / Y_{t 1}\right)^{1 /(t 2-t 1)} \times 100 \%$
where Y_{t} stands for the number of deaths in any year t and $P(A)$ stands for the average yearly reduction over the period considered.

Example:

(halving the number of deaths in the EU)
$\mathrm{Y}_{\mathrm{t} 1}=50,000(1), \mathrm{Y}_{\mathrm{t} 2}=25,000(0.5)$ over the period 2001-2010 $\left(2010-2001=\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)=9\right)$
$P(A)=1-(0.5)^{1 / 9}=0.07413=7,4 \%$ (rounded for practical purposes)
Halving over 9 years requires a uniform annual percentage reduction of 7.413 per cent (7.4 per cent for practical purposes).

For estimating the average annual percentage reduction in deaths achieved by a country between year 0 and year N (e.g. between 2001 and 2006 with $\mathrm{N}=5$ for comparison with the required 7.4 per cent) one should make use of the whole time series of numbers of deaths, not just the numbers in years 0 and N .

Let the average reduction per year as a percentage of the previous year be p. If Y_{n} is the number of deaths in year n, then we wish to fit a model $Y_{n}=Y_{0}(1-p / 100)^{n}$.

This is equivalent to $\ln \left(Y_{n} / Y_{0}\right)=n \ln (1-\mathrm{p} / 100)$ so if we fit $\ln \left(Y_{n} Y_{0}\right)=$ an by linear regression, then a is the estimate of $\ln (1-p / 100)$ and p is estimated by $100\left(1-e^{a}\right)$.

In this figure illustrating the use of the method and constructed for Finland, the function $\ln \left(Y_{n} / Y_{0}\right)=$ an corresponds to the function $\mathrm{y}=\mathrm{ax}$. The targeted reduction curve is shown together with the fitted (linear regression) line.

