

Methodological note (Flash6): Regression estimation of average annual percentage reduction in deaths from a time series of number of deaths

The average yearly reduction can be calculated from any two years figures if assuming a uniform annual percentage reduction over the period considered as follows:

 $P(A) = 1 - (Y_{t2}/Y_{t1})^{1/(t2-t1)} \times 100\%$

where Y_t stands for the number of deaths in any year t and P(A) stands for the average yearly reduction over the period considered.

Example:

(halving the number of deaths in the EU)

 $Y_{t1}=50,000$ (1), $Y_{t2}=25,000$ (0.5) over the period 2001-2010 (2010-2001=(t_2 - t_1)=9)

P(A)=1-(0.5)^{1/9}=0.07413=7,4% (rounded for practical purposes)

Halving over 9 years requires a uniform annual percentage reduction of 7.413 per cent (7.4 per cent for practical purposes).

For estimating the average annual percentage reduction in deaths achieved by a country between year 0 and year N (e.g. between 2001 and 2006 with N = 5 for comparison with the required 7.4 per cent) one should make use of the whole time series of numbers of deaths, not just the numbers in years 0 and N.

Let the average reduction per year as a percentage of the previous year be p. If Y_n is the number of deaths in year n, then we wish to fit a model $Y_n = Y_0(1 - p/100)^n$.

This is equivalent to $\ln(Y_n/Y_0) = n\ln(1-p/100)$ so if we fit $\ln(Y_n/Y_0) = an$ by linear regression, then *a* is the estimate of $\ln(1-p/100)$ and *p* is estimated by $100(1-e^a)$.

In this figure illustrating the use of the method and constructed for Finland, the function $\ln(Y_n/Y_0) = an$ corresponds to the function y=ax. The targeted reduction curve is shown together with the fitted (linear regression) line.